A Permutation-equivariant Deep Learning Model for Quantum State Characterization (2502.15305v2)
Abstract: The characterization of quantum states is a fundamental step of any application of quantum technologies. Nowadays there exist several approaches addressing this problem, also based on machine and deep learning techniques. However, all these approaches usually require a number of measurement that scales exponentially with the number of parties composing the system. Threshold quantum state tomography (tQST) addresses this problem and, in some cases of interest, can significantly reduce the number of measurements. In this paper, we study how to combine a permutation-equivariant deep learning model with the tQST protocol. We test the model on quantum state tomography and purity estimation. Finally, we validate the robustness of the model to noise. We show results up to 4 qubits.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.