Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

User Experience with LLM-powered Conversational Recommendation Systems: A Case of Music Recommendation (2502.15229v2)

Published 21 Feb 2025 in cs.HC

Abstract: The advancement of LLMs now allows users to actively interact with conversational recommendation systems (CRS) and build their own personalized recommendation services tailored to their unique needs and goals. This experience offers users a significantly higher level of controllability compared to traditional RS, enabling an entirely new dimension of recommendation experiences. Building on this context, this study explored the unique experiences that LLM-powered CRS can provide compared to traditional RS. Through a three-week diary study with 12 participants using custom GPTs for music recommendations, we found that LLM-powered CRS can (1) help users clarify implicit needs, (2) support unique exploration, and (3) facilitate a deeper understanding of musical preferences. Based on these findings, we discuss the new design space enabled by LLM-powered CRS and highlight its potential to support more personalized, user-driven recommendation experiences.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.