Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Voter Model Meets Rumour Spreading: A Study of Consensus Protocols on Graphs with Agnostic Nodes [Extended Version] (2502.15029v1)

Published 20 Feb 2025 in cs.MA

Abstract: Problems of consensus in multi-agent systems are often viewed as a series of independent, simultaneous local decisions made between a limited set of options, all aimed at reaching a global agreement. Key challenges in these protocols include estimating the likelihood of various outcomes and finding bounds for how long it may take to achieve consensus, if it occurs at all. To date, little attention has been given to the case where some agents have no initial opinion. In this paper, we introduce a variant of the consensus problem which includes what we call `agnostic' nodes and frame it as a combination of two known and well-studied processes: voter model and rumour spreading. We show (1) a martingale that describes the probability of consensus for a given colour, (2) bounds on the number of steps for the process to end using results from rumour spreading and voter models, (3) closed formulas for the probability of consensus in a few special cases, and (4) that the computational complexity of estimating the probability with a Markov chain Monte Carlo process is $O(n2 \log n)$ for general graphs and $O(n\log n)$ for Erd\H{o}s-R\'enyi graphs, which makes it an efficient method for estimating probabilities of consensus. Furthermore, we present experimental results suggesting that the number of runs needed for a given standard error decreases when the number of nodes increases.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube