A Socratic RAG Approach to Connect Natural Language Queries on Research Topics with Knowledge Organization Systems (2502.15005v1)
Abstract: In this paper, we propose a Retrieval Augmented Generation (RAG) agent that maps natural language queries about research topics to precise, machine-interpretable semantic entities. Our approach combines RAG with Socratic dialogue to align a user's intuitive understanding of research topics with established Knowledge Organization Systems (KOSs). The proposed approach will effectively bridge "little semantics" (domain-specific KOS structures) with "big semantics" (broad bibliometric repositories), making complex academic taxonomies more accessible. Such agents have the potential for broad use. We illustrate with a sample application called CollabNext, which is a person-centric knowledge graph connecting people, organizations, and research topics. We further describe how the application design has an intentional focus on HBCUs and emerging researchers to raise visibility of people historically rendered invisible in the current science system.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.