Papers
Topics
Authors
Recent
Search
2000 character limit reached

Curiosity Driven Multi-agent Reinforcement Learning for 3D Game Testing

Published 20 Feb 2025 in cs.SE | (2502.14606v1)

Abstract: Recently testing of games via autonomous agents has shown great promise in tackling challenges faced by the game industry, which mainly relied on either manual testing or record/replay. In particular Reinforcement Learning (RL) solutions have shown potential by learning directly from playing the game without the need for human intervention. In this paper, we present cMarlTest, an approach for testing 3D games through curiosity driven Multi-Agent Reinforcement Learning (MARL). cMarlTest deploys multiple agents that work collaboratively to achieve the testing objective. The use of multiple agents helps resolve issues faced by a single agent approach. We carried out experiments on different levels of a 3D game comparing the performance of cMarlTest with a single agent RL variant. Results are promising where, considering three different types of coverage criteria, cMarlTest achieved higher coverage. cMarlTest was also more efficient in terms of the time taken, with respect to the single agent based variant.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.