Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 28 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Multi-Faceted Studies on Data Poisoning can Advance LLM Development (2502.14182v1)

Published 20 Feb 2025 in cs.CR and cs.LG

Abstract: The lifecycle of LLMs is far more complex than that of traditional machine learning models, involving multiple training stages, diverse data sources, and varied inference methods. While prior research on data poisoning attacks has primarily focused on the safety vulnerabilities of LLMs, these attacks face significant challenges in practice. Secure data collection, rigorous data cleaning, and the multistage nature of LLM training make it difficult to inject poisoned data or reliably influence LLM behavior as intended. Given these challenges, this position paper proposes rethinking the role of data poisoning and argue that multi-faceted studies on data poisoning can advance LLM development. From a threat perspective, practical strategies for data poisoning attacks can help evaluate and address real safety risks to LLMs. From a trustworthiness perspective, data poisoning can be leveraged to build more robust LLMs by uncovering and mitigating hidden biases, harmful outputs, and hallucinations. Moreover, from a mechanism perspective, data poisoning can provide valuable insights into LLMs, particularly the interplay between data and model behavior, driving a deeper understanding of their underlying mechanisms.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.