Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

DiffExp: Efficient Exploration in Reward Fine-tuning for Text-to-Image Diffusion Models (2502.14070v1)

Published 19 Feb 2025 in cs.CV and cs.AI

Abstract: Fine-tuning text-to-image diffusion models to maximize rewards has proven effective for enhancing model performance. However, reward fine-tuning methods often suffer from slow convergence due to online sample generation. Therefore, obtaining diverse samples with strong reward signals is crucial for improving sample efficiency and overall performance. In this work, we introduce DiffExp, a simple yet effective exploration strategy for reward fine-tuning of text-to-image models. Our approach employs two key strategies: (a) dynamically adjusting the scale of classifier-free guidance to enhance sample diversity, and (b) randomly weighting phrases of the text prompt to exploit high-quality reward signals. We demonstrate that these strategies significantly enhance exploration during online sample generation, improving the sample efficiency of recent reward fine-tuning methods, such as DDPO and AlignProp.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: