Papers
Topics
Authors
Recent
2000 character limit reached

DFDT: Dynamic Fast Decision Tree for IoT Data Stream Mining on Edge Devices (2502.14011v1)

Published 19 Feb 2025 in cs.LG, cs.AI, and cs.NI

Abstract: The Internet of Things generates massive data streams, with edge computing emerging as a key enabler for online IoT applications and 5G networks. Edge solutions facilitate real-time machine learning inference, but also require continuous adaptation to concept drifts. Ensemble-based solutions improve predictive performance, but incur higher resource consumption, latency, and memory demands. This paper presents DFDT: Dynamic Fast Decision Tree, a novel algorithm designed for energy-efficient memory-constrained data stream mining. DFDT improves hoeffding tree growth efficiency by dynamically adjusting grace periods, tie thresholds, and split evaluations based on incoming data. It incorporates stricter evaluation rules (based on entropy, information gain, and leaf instance count), adaptive expansion modes, and a leaf deactivation mechanism to manage memory, allowing more computation on frequently visited nodes while conserving energy on others. Experiments show that the proposed framework can achieve increased predictive performance (0.43 vs 0.29 ranking) with constrained memory and a fraction of the runtime of VFDT or SVFDT.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.