Optimistically Optimistic Exploration for Provably Efficient Infinite-Horizon Reinforcement and Imitation Learning
Abstract: We study the problem of reinforcement learning in infinite-horizon discounted linear Markov decision processes (MDPs), and propose the first computationally efficient algorithm achieving rate-optimal regret guarantees in this setting. Our main idea is to combine two classic techniques for optimistic exploration: additive exploration bonuses applied to the reward function, and artificial transitions made to an absorbing state with maximal return. We show that, combined with a regularized approximate dynamic-programming scheme, the resulting algorithm achieves a regret of order $\tilde{\mathcal{O}} (\sqrt{d3 (1 - \gamma){- 7 / 2} T})$, where $T$ is the total number of sample transitions, $\gamma \in (0,1)$ is the discount factor, and $d$ is the feature dimensionality. The results continue to hold against adversarial reward sequences, enabling application of our method to the problem of imitation learning in linear MDPs, where we achieve state-of-the-art results.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.