Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The KnowWhereGraph: A Large-Scale Geo-Knowledge Graph for Interdisciplinary Knowledge Discovery and Geo-Enrichment (2502.13874v2)

Published 19 Feb 2025 in cs.DB

Abstract: Global challenges such as food supply chain disruptions, public health crises, and natural hazard responses require access to and integration of diverse datasets, many of which are geospatial. Over the past few years, a growing number of (geo)portals have been developed to address this need. However, most existing (geo)portals are stacked by separated or sparsely connected data "silos" impeding effective data consolidation. A new way of sharing and reusing geospatial data is therefore urgently needed. In this work, we introduce KnowWhereGraph, a knowledge graph-based data integration, enrichment, and synthesis framework that not only includes schemas and data related to human and environmental systems but also provides a suite of supporting tools for accessing this information. The KnowWhereGraph aims to address the challenge of data integration by building a large-scale, cross-domain, pre-integrated, FAIR-principles-based, and AI-ready data warehouse rooted in knowledge graphs. We highlight the design principles of KnowWhereGraph, emphasizing the roles of space, place, and time in bridging various data "silos". Additionally, we demonstrate multiple use cases where the proposed geospatial knowledge graph and its associated tools empower decision-makers to uncover insights that are often hidden within complex and poorly interoperable datasets.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube