Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 32 tok/s Pro
2000 character limit reached

A Unified Ontology for Scalable Knowledge Graph-Driven Operational Data Analytics in High-Performance Computing Systems (2507.06107v1)

Published 8 Jul 2025 in cs.DC and cs.DB

Abstract: Modern high-performance computing (HPC) systems generate massive volumes of heterogeneous telemetry data from millions of sensors monitoring compute, memory, power, cooling, and storage subsystems. As HPC infrastructures scale to support increasingly complex workloads-including generative AI-the need for efficient, reliable, and interoperable telemetry analysis becomes critical. Operational Data Analytics (ODA) has emerged to address these demands; however, the reliance on schema-less storage solutions limits data accessibility and semantic integration. Ontologies and knowledge graphs (KG) provide an effective way to enable efficient and expressive data querying by capturing domain semantics, but they face challenges such as significant storage overhead and the limited applicability of existing ontologies, which are often tailored to specific HPC systems only. In this paper, we present the first unified ontology for ODA in HPC systems, designed to enable semantic interoperability across heterogeneous data centers. Our ontology models telemetry data from the two largest publicly available ODA datasets-M100 (Cineca, Italy) and F-DATA (Fugaku, Japan)-within a single data model. The ontology is validated through 36 competency questions reflecting real-world stakeholder requirements, and we introduce modeling optimizations that reduce knowledge graph (KG) storage overhead by up to 38.84% compared to a previous approach, with an additional 26.82% reduction depending on the desired deployment configuration. This work paves the way for scalable ODA KGs and supports not only analysis within individual systems, but also cross-system analysis across heterogeneous HPC systems.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.