Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Structural determinants of soft memory in recurrent biological networks (2502.13872v1)

Published 19 Feb 2025 in q-bio.MN

Abstract: Recurrent neural networks are frequently studied in terms of their information-processing capabilities. The structural properties of these networks are seldom considered, beyond those emerging from the connectivity tuning necessary for network training. However, real biological networks have non-contingent architectures that have been shaped by evolution over eons, constrained partly by information-processing criteria, but more generally by fitness maximization requirements. Here we examine the topological properties of existing biological networks, focusing in particular on gene regulatory networks in bacteria. We identify structural features, both local and global, that dictate the ability of recurrent networks to store information on the fly and process complex time-dependent inputs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: