Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Inference of Abstraction for Grounded Predicate Logic (2502.13743v1)

Published 19 Feb 2025 in cs.AI

Abstract: An important open question in AI is what simple and natural principle enables a machine to reason logically for meaningful abstraction with grounded symbols. This paper explores a conceptually new approach to combining probabilistic reasoning and predicative symbolic reasoning over data. We return to the era of reasoning with a full joint distribution before the advent of Bayesian networks. We then discuss that a full joint distribution over models of exponential size in propositional logic and of infinite size in predicate logic should be simply derived from a full joint distribution over data of linear size. We show that the same process is not only enough to generalise the logical consequence relation of predicate logic but also to provide a new perspective to rethink well-known limitations such as the undecidability of predicate logic, the symbol grounding problem and the principle of explosion. The reproducibility of this theoretical work is fully demonstrated by the included proofs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.