Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Diffusion Model Agnostic Social Influence Maximization in Hyperbolic Space (2502.13571v1)

Published 19 Feb 2025 in cs.SI and cs.LG

Abstract: The Influence Maximization (IM) problem aims to find a small set of influential users to maximize their influence spread in a social network. Traditional methods rely on fixed diffusion models with known parameters, limiting their generalization to real-world scenarios. In contrast, graph representation learning-based methods have gained wide attention for overcoming this limitation by learning user representations to capture influence characteristics. However, existing studies are built on Euclidean space, which fails to effectively capture the latent hierarchical features of social influence distribution. As a result, users' influence spread cannot be effectively measured through the learned representations. To alleviate these limitations, we propose HIM, a novel diffusion model agnostic method that leverages hyperbolic representation learning to estimate users' potential influence spread from social propagation data. HIM consists of two key components. First, a hyperbolic influence representation module encodes influence spread patterns from network structure and historical influence activations into expressive hyperbolic user representations. Hence, the influence magnitude of users can be reflected through the geometric properties of hyperbolic space, where highly influential users tend to cluster near the space origin. Second, a novel adaptive seed selection module is developed to flexibly and effectively select seed users using the positional information of learned user representations. Extensive experiments on five network datasets demonstrate the superior effectiveness and efficiency of our method for the IM problem with unknown diffusion model parameters, highlighting its potential for large-scale real-world social networks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.