Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Quotients of skew polynomial rings: new constructions of division algebras and MRD codes (2502.13531v1)

Published 19 Feb 2025 in math.CO, cs.IT, math.IT, and math.RA

Abstract: We achieve new results on skew polynomial rings and their quotients, including the first explicit example of a skew polynomial ring where the ratio of the degree of a skew polynomial to the degree of its bound is not extremal. These methods lead to the construction of new (not necessarily associative) division algebras and maximum rank distance (MRD) codes over both finite and infinite division rings. In particular, we construct new non-associative division algebras whose right nucleus is a central simple algebra having degree greater than 1. Over finite fields, we obtain new semifields and MRD codes for infinitely many choices of parameters. These families extend and contain many of the best previously known constructions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: