Papers
Topics
Authors
Recent
2000 character limit reached

Improving Collision-Free Success Rate For Object Goal Visual Navigation Via Two-Stage Training With Collision Prediction (2502.13498v1)

Published 19 Feb 2025 in cs.RO and cs.CV

Abstract: The object goal visual navigation is the task of navigating to a specific target object using egocentric visual observations. Recent end-to-end navigation models based on deep reinforcement learning have achieved remarkable performance in finding and reaching target objects. However, the collision problem of these models during navigation remains unresolved, since the collision is typically neglected when evaluating the success. Although incorporating a negative reward for collision during training appears straightforward, it results in a more conservative policy, thereby limiting the agent's ability to reach targets. In addition, many of these models utilize only RGB observations, further increasing the difficulty of collision avoidance without depth information. To address these limitations, a new concept -- collision-free success is introduced to evaluate the ability of navigation models to find a collision-free path towards the target object. A two-stage training method with collision prediction is proposed to improve the collision-free success rate of the existing navigation models using RGB observations. In the first training stage, the collision prediction module supervises the agent's collision states during exploration to learn to predict the possible collision. In the second stage, leveraging the trained collision prediction, the agent learns to navigate to the target without collision. The experimental results in the AI2-THOR environment demonstrate that the proposed method greatly improves the collision-free success rate of different navigation models and outperforms other comparable collision-avoidance methods.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 6 likes about this paper.