Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Improving Multi-turn Task Completion in Task-Oriented Dialog Systems via Prompt Chaining and Fine-Grained Feedback (2502.13298v1)

Published 18 Feb 2025 in cs.CL

Abstract: Task-oriented dialog (TOD) systems facilitate users in accomplishing complex, multi-turn tasks through natural language. While traditional approaches rely on extensive fine-tuning and annotated data for each domain, instruction-tuned LLMs offer a more flexible alternative. However, LLMs struggle to reliably handle multi-turn task completion, particularly with accurately generating API calls and adapting to new domains without explicit demonstrations. To address these challenges, we propose RealTOD, a novel framework that enhances TOD systems through prompt chaining and fine-grained feedback mechanisms. Prompt chaining enables zero-shot domain adaptation via a two-stage prompting strategy, eliminating the need for human-curated demonstrations. Meanwhile, the fine-grained feedback mechanism improves task completion by verifying API calls against domain schemas and providing precise corrective feedback when errors are detected. We conduct extensive experiments on the SGD and BiTOD benchmarks using four LLMs. RealTOD improves API accuracy, surpassing AutoTOD by 37.74% on SGD and SimpleTOD by 11.26% on BiTOD. Human evaluations further confirm that LLMs integrated with RealTOD achieve superior task completion, fluency, and informativeness compared to existing methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.