Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Synthetic Data Generation for Culturally Nuanced Commonsense Reasoning in Low-Resource Languages (2502.12932v1)

Published 18 Feb 2025 in cs.CL

Abstract: Quantifying reasoning capability in low-resource languages remains a challenge in NLP due to data scarcity and limited access to annotators. While LLM-assisted dataset construction has proven useful for medium- and high-resource languages, its effectiveness in low-resource languages, particularly for commonsense reasoning, is still unclear. In this paper, we compare three dataset creation strategies: (1) LLM-assisted dataset generation, (2) machine translation, and (3) human-written data by native speakers, to build a culturally nuanced story comprehension dataset. We focus on Javanese and Sundanese, two major local languages in Indonesia, and evaluate the effectiveness of open-weight and closed-weight LLMs in assisting dataset creation through extensive manual validation. To assess the utility of synthetic data, we fine-tune LLMs on classification and generation tasks using this data and evaluate performance on a human-written test set. Our findings indicate that LLM-assisted data creation outperforms machine translation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.