Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Multi-vision-based Picking Point Localisation of Target Fruit for Harvesting Robots (2502.12406v1)

Published 18 Feb 2025 in cs.RO and cs.CV

Abstract: This paper presents multi-vision-based localisation strategies for harvesting robots. Identifying picking points accurately is essential for robotic harvesting because insecure grasping can lead to economic loss through fruit damage and dropping. In this study, two multi-vision-based localisation methods, namely the analytical approach and model-based algorithms, were employed. The actual geometric centre points of fruits were collected using a motion capture system (mocap), and two different surface points Cfix and Ceih were extracted using two Red-Green-Blue-Depth (RGB-D) cameras. First, the picking points of the target fruit were detected using analytical methods. Second, various primary and ensemble learning methods were employed to predict the geometric centre of target fruits by taking surface points as input. Adaboost regression, the most successful model-based localisation algorithm, achieved 88.8% harvesting accuracy with a Mean Euclidean Distance (MED) of 4.40 mm, while the analytical approach reached 81.4% picking success with a MED of 14.25 mm, both demonstrating better performance than the single-camera, which had a picking success rate of 77.7% with a MED of 24.02 mm. To evaluate the effect of picking point accuracy in collecting fruits, a series of robotic harvesting experiments were performed utilising a collaborative robot (cobot). It is shown that multi-vision systems can improve picking point localisation, resulting in higher success rates of picking in robotic harvesting.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.