Papers
Topics
Authors
Recent
2000 character limit reached

Factual Inconsistency in Data-to-Text Generation Scales Exponentially with LLM Size: A Statistical Validation (2502.12372v1)

Published 17 Feb 2025 in cs.CL, cs.AI, and cs.LG

Abstract: Monitoring factual inconsistency is essential for ensuring trustworthiness in data-to-text generation (D2T). While LLMs have demonstrated exceptional performance across various D2T tasks, previous studies on scaling laws have primarily focused on generalization error through power law scaling to LLM size (i.e., the number of model parameters). However, no research has examined the impact of LLM size on factual inconsistency in D2T. In this paper, we investigate how factual inconsistency in D2T scales with LLM size by exploring two scaling laws: power law and exponential scaling. To rigorously evaluate and compare these scaling laws, we employ a statistical validation framework consisting of three key stages: predictive performance estimation, goodness-of-fit assessment, and comparative analysis. For a comprehensive empirical study, we analyze three popular LLM families across five D2T datasets, measuring factual inconsistency inversely using four state-of-the-art consistency metrics. Our findings, based on exhaustive empirical results and validated through our framework, reveal that, contrary to the widely assumed power law scaling, factual inconsistency in D2T follows an exponential scaling with LLM size.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.