Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Stability-based Generalization Bounds for Variational Inference (2502.12353v1)

Published 17 Feb 2025 in cs.LG

Abstract: Variational inference (VI) is widely used for approximate inference in Bayesian machine learning. In addition to this practical success, generalization bounds for variational inference and related algorithms have been developed, mostly through the connection to PAC-Bayes analysis. A second line of work has provided algorithm-specific generalization bounds through stability arguments or using mutual information bounds, and has shown that the bounds are tight in practice, but unfortunately these bounds do not directly apply to approximate Bayesian algorithms. This paper fills this gap by developing algorithm-specific stability based generalization bounds for a class of approximate Bayesian algorithms that includes VI, specifically when using stochastic gradient descent to optimize their objective. As in the non-Bayesian case, the generalization error is bounded by by expected parameter differences on a perturbed dataset. The new approach complements PAC-Bayes analysis and can provide tighter bounds in some cases. An experimental illustration shows that the new approach yields non-vacuous bounds on modern neural network architectures and datasets and that it can shed light on performance differences between variant approximate Bayesian algorithms.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube