Papers
Topics
Authors
Recent
Search
2000 character limit reached

Motivic counting of rational curves with tangency conditions via universal torsors

Published 17 Feb 2025 in math.AG and math.NT | (2502.11704v1)

Abstract: Using the formalism of Cox rings and universal torsors, we prove a decomposition of the Grothendieck motive of the moduli space of morphisms from an arbitrary smooth projective curve to a Mori Dream Space (MDS). For the simplest cases of MDS, that of toric varieties, we use this decomposition to prove an instance of the motivic Batyrev--Manin--Peyre principle for curves satisfying tangency conditions with respect to the boundary divisors, often called Campana curves.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.