Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Single-dimensional Contract Design: Efficient Algorithms and Learning (2502.11661v1)

Published 17 Feb 2025 in cs.GT

Abstract: We study a Bayesian contract design problem in which a principal interacts with an unknown agent. We consider the single-parameter uncertainty model introduced by Alon et al. [2021], in which the agent's type is described by a single parameter, i.e., the cost per unit-of-effort. Despite its simplicity, several works have shown that single-dimensional contract design is not necessarily easier than its multi-dimensional counterpart in many respects. Perhaps the most surprising result is the reduction by Castiglioni et al . [2025] from multi- to single-dimensional contract design. However, their reduction preserves only multiplicative approximations, leaving open the question of whether additive approximations are easier to obtain than multiplicative ones. In this paper, we answer this question -- to some extent -- positively. In particular, we provide an additive PTAS for these problems while also ruling out the existence of an additive FPTAS. This, in turn, implies that no reduction from multi- to single-dimensional contracts can preserve additive approximations. Moreover, we show that single-dimensional contract design is fundamentally easier than its multi-dimensional counterpart from a learning perspective. Under mild assumptions, we show that optimal contracts can be learned efficiently, providing results on both regret and sample complexity.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube