Papers
Topics
Authors
Recent
2000 character limit reached

From the New World of Word Embeddings: A Comparative Study of Small-World Lexico-Semantic Networks in LLMs (2502.11380v2)

Published 17 Feb 2025 in cs.CL

Abstract: Lexico-semantic networks represent words as nodes and their semantic relatedness as edges. While such networks are traditionally constructed using embeddings from encoder-based models or static vectors, embeddings from decoder-only LLMs remain underexplored. Unlike encoder models, LLMs are trained with a next-token prediction objective, which does not directly encode the meaning of the current token. In this paper, we construct lexico-semantic networks from the input embeddings of LLMs with varying parameter scales and conduct a comparative analysis of their global and local structures. Our results show that these networks exhibit small-world properties, characterized by high clustering and short path lengths. Moreover, larger LLMs yield more intricate networks with less small-world effects and longer paths, reflecting richer semantic structures and relations. We further validate our approach through analyses of common conceptual pairs, structured lexical relations derived from WordNet, and a cross-lingual semantic network for qualitative words.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.