Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

ALGEN: Few-shot Inversion Attacks on Textual Embeddings using Alignment and Generation (2502.11308v2)

Published 16 Feb 2025 in cs.CR, cs.AI, and cs.CL

Abstract: With the growing popularity of LLMs and vector databases, private textual data is increasingly processed and stored as numerical embeddings. However, recent studies have proven that such embeddings are vulnerable to inversion attacks, where original text is reconstructed to reveal sensitive information. Previous research has largely assumed access to millions of sentences to train attack models, e.g., through data leakage or nearly unrestricted API access. With our method, a single data point is sufficient for a partially successful inversion attack. With as little as 1k data samples, performance reaches an optimum across a range of black-box encoders, without training on leaked data. We present a Few-shot Textual Embedding Inversion Attack using ALignment and GENeration (ALGEN), by aligning victim embeddings to the attack space and using a generative model to reconstruct text. We find that ALGEN attacks can be effectively transferred across domains and languages, revealing key information. We further examine a variety of defense mechanisms against ALGEN, and find that none are effective, highlighting the vulnerabilities posed by inversion attacks. By significantly lowering the cost of inversion and proving that embedding spaces can be aligned through one-step optimization, we establish a new textual embedding inversion paradigm with broader applications for embedding alignment in NLP.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.