Error Bound Analysis for the Regularized Loss of Deep Linear Neural Networks (2502.11152v2)
Abstract: The optimization foundations of deep linear networks have received significant attention lately. However, due to the non-convexity and hierarchical structure, analyzing the regularized loss of deep linear networks remains a challenging task. In this work, we study the local geometric landscape of the regularized squared loss of deep linear networks, providing a deeper understanding of its optimization properties. Specifically, we characterize the critical point set and establish an error-bound property for all critical points under mild conditions. Notably, we identify the sufficient and necessary conditions under which the error bound holds. To support our theoretical findings, we conduct numerical experiments demonstrating that gradient descent exhibits linear convergence when optimizing the regularized loss of deep linear networks.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.