DT4ECG: A Dual-Task Learning Framework for ECG-Based Human Identity Recognition and Human Activity Detection (2502.11023v1)
Abstract: This article introduces DT4ECG, an innovative dual-task learning framework for Electrocardiogram (ECG)-based human identity recognition and activity detection. The framework employs a robust one-dimensional convolutional neural network (1D-CNN) backbone integrated with residual blocks to extract discriminative ECG features. To enhance feature representation, we propose a novel Sequence Channel Attention (SCA) mechanism, which combines channel-wise and sequential context attention to prioritize informative features across both temporal and channel dimensions. Furthermore, to address gradient imbalance in multi-task learning, we integrate GradNorm, a technique that dynamically adjusts loss weights based on gradient magnitudes, ensuring balanced training across tasks. Experimental results demonstrate the superior performance of our model, achieving accuracy rates of 99.12% in ID classification and 90.11% in activity classification. These findings underscore the potential of the DT4ECG framework in enhancing security and user experience across various applications such as fitness monitoring and personalized healthcare, thereby presenting a transformative approach to integrating ECG-based biometrics in everyday technologies.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.