Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Distillation-based Future-aware Graph Neural Network for Stock Trend Prediction (2502.10776v1)

Published 15 Feb 2025 in cs.LG, cs.AI, and q-fin.PM

Abstract: Stock trend prediction involves forecasting the future price movements by analyzing historical data and various market indicators. With the advancement of machine learning, graph neural networks (GNNs) have been extensively employed in stock prediction due to their powerful capability to capture spatiotemporal dependencies of stocks. However, despite the efforts of various GNN stock predictors to enhance predictive performance, the improvements remain limited, as they focus solely on analyzing historical spatiotemporal dependencies, overlooking the correlation between historical and future patterns. In this study, we propose a novel distillation-based future-aware GNN framework (DishFT-GNN) for stock trend prediction. Specifically, DishFT-GNN trains a teacher model and a student model, iteratively. The teacher model learns to capture the correlation between distribution shifts of historical and future data, which is then utilized as intermediate supervision to guide the student model to learn future-aware spatiotemporal embeddings for accurate prediction. Through extensive experiments on two real-world datasets, we verify the state-of-the-art performance of DishFT-GNN.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.