Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Robust Estimation of Item Parameters via Divergence Measures in Item Response Theory (2502.10741v1)

Published 15 Feb 2025 in stat.ME and stat.AP

Abstract: Marginal maximum likelihood estimation (MMLE) in item response theory (IRT) is highly sensitive to aberrant responses, such as careless answering and random guessing, which can reduce estimation accuracy. To address this issue, this study introduces robust estimation methods for item parameters in IRT. Instead of empirically minimizing Kullback--Leibler divergence as in MMLE, the proposed approach minimizes the objective functions based on robust divergences, specifically density power divergence and {\gamma}-divergence. The resulting estimators are statistically consistent and asymptotically normal under appropriate regularity conditions. Furthermore, they offer a flexible trade-off between robustness and efficiency through hyperparameter tuning, forming a generalized estimation framework encompassing MMLE as a special case. To evaluate the effectiveness of the proposed methods, we conducted simulation experiments under various conditions, including scenarios with aberrant responses. The results demonstrated that the proposed methods surpassed existing ones in performance across various conditions. Moreover, numerical analysis of influence functions verified that increasing the hyperparameters effectively suppressed the impact of responses with low occurrence probabilities, which are potentially aberrant. These findings highlight that the proposed approach offers a robust alternative to MMLE, significantly enhancing measurement accuracy in testing and survey contexts prone to aberrant responses.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.