Papers
Topics
Authors
Recent
2000 character limit reached

Beyond One-Size-Fits-All Pruning via Evolutionary Metric Search for Large Language Models (2502.10735v2)

Published 15 Feb 2025 in cs.CL

Abstract: Post-training pruning has emerged as a crucial optimization technique as LLMs continue to grow rapidly. However, the significant variations in weight distributions across different LLMs make fixed pruning strategies inadequate for multiple models. In this paper, we introduce \textbf{\textsc{OptiShear}}, an efficient evolutionary optimization framework for adaptive LLM pruning. Our framework features two key innovations: an effective search space built on our Meta pruning metric to handle diverse weight distributions, and a model-wise reconstruction error for rapid evaluation during search trials. We employ Non-dominated Sorting Genetic Algorithm III (NSGA-III) to optimize both pruning metrics and layerwise sparsity ratios. Through extensive evaluation on LLaMA-1/2/3 and Mistral models (7B-70B) across multiple benchmarks, we demonstrate that our adaptive pruning metrics consistently outperform existing methods. Additionally, our discovered layerwise sparsity ratios enhance the effectiveness of other pruning metrics. The framework exhibits strong cross-task and cross-model generalizability, providing a cost-effective solution for model compression.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.