Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Rule-Bottleneck Reinforcement Learning: Joint Explanation and Decision Optimization for Resource Allocation with Language Agents (2502.10732v1)

Published 15 Feb 2025 in cs.LG and cs.AI

Abstract: Deep Reinforcement Learning (RL) is remarkably effective in addressing sequential resource allocation problems in domains such as healthcare, public policy, and resource management. However, deep RL policies often lack transparency and adaptability, challenging their deployment alongside human decision-makers. In contrast, Language Agents, powered by LLMs, provide human-understandable reasoning but may struggle with effective decision making. To bridge this gap, we propose Rule-Bottleneck Reinforcement Learning (RBRL), a novel framework that jointly optimizes decision and explanations. At each step, RBRL generates candidate rules with an LLM, selects among them using an attention-based RL policy, and determines the environment action with an explanation via chain-of-thought reasoning. The RL rule selection is optimized using the environment rewards and an explainability metric judged by the LLM. Evaluations in real-world scenarios highlight RBRL's competitive performance with deep RL and efficiency gains over LLM fine-tuning. A survey further confirms the enhanced quality of its explanations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.