Papers
Topics
Authors
Recent
2000 character limit reached

Is Self-Supervised Pre-training on Satellite Imagery Better than ImageNet? A Systematic Study with Sentinel-2

Published 15 Feb 2025 in cs.CV | (2502.10669v1)

Abstract: Self-supervised learning (SSL) has demonstrated significant potential in pre-training robust models with limited labeled data, making it particularly valuable for remote sensing (RS) tasks. A common assumption is that pre-training on domain-aligned data provides maximal benefits on downstream tasks, particularly when compared to ImageNet-pretraining (INP). In this work, we investigate this assumption by collecting GeoNet, a large and diverse dataset of global optical Sentinel-2 imagery, and pre-training SwAV and MAE on both GeoNet and ImageNet. Evaluating these models on six downstream tasks in the few-shot setting reveals that SSL pre-training on RS data offers modest performance improvements over INP, and that it remains competitive in multiple scenarios. This indicates that the presumed benefits of SSL pre-training on RS data may be overstated, and the additional costs of data curation and pre-training could be unjustified.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 28 likes about this paper.