Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization (2502.10648v2)

Published 15 Feb 2025 in cs.LG and stat.ML

Abstract: We introduce LLM-Lasso, a novel framework that leverages LLMs to guide feature selection in Lasso $\ell_1$ regression. Unlike traditional methods that rely solely on numerical data, LLM-Lasso incorporates domain-specific knowledge extracted from natural language, enhanced through a retrieval-augmented generation (RAG) pipeline, to seamlessly integrate data-driven modeling with contextual insights. Specifically, the LLM generates penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model. Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model, while less relevant features are assigned higher penalties, reducing their influence. Importantly, LLM-Lasso has an internal validation step that determines how much to trust the contextual knowledge in our prediction pipeline. Hence it addresses key challenges in robustness, making it suitable for mitigating potential inaccuracies or hallucinations from the LLM. In various biomedical case studies, LLM-Lasso outperforms standard Lasso and existing feature selection baselines, all while ensuring the LLM operates without prior access to the datasets. To our knowledge, this is the first approach to effectively integrate conventional feature selection techniques directly with LLM-based domain-specific reasoning.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 16 likes.

Upgrade to Pro to view all of the tweets about this paper: