Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

HIPPo: Harnessing Image-to-3D Priors for Model-free Zero-shot 6D Pose Estimation (2502.10606v1)

Published 14 Feb 2025 in cs.CV and cs.RO

Abstract: This work focuses on model-free zero-shot 6D object pose estimation for robotics applications. While existing methods can estimate the precise 6D pose of objects, they heavily rely on curated CAD models or reference images, the preparation of which is a time-consuming and labor-intensive process. Moreover, in real-world scenarios, 3D models or reference images may not be available in advance and instant robot reaction is desired. In this work, we propose a novel framework named HIPPo, which eliminates the need for curated CAD models and reference images by harnessing image-to-3D priors from Diffusion Models, enabling model-free zero-shot 6D pose estimation. Specifically, we construct HIPPo Dreamer, a rapid image-to-mesh model built on a multiview Diffusion Model and a 3D reconstruction foundation model. Our HIPPo Dreamer can generate a 3D mesh of any unseen objects from a single glance in just a few seconds. Then, as more observations are acquired, we propose to continuously refine the diffusion prior mesh model by joint optimization of object geometry and appearance. This is achieved by a measurement-guided scheme that gradually replaces the plausible diffusion priors with more reliable online observations. Consequently, HIPPo can instantly estimate and track the 6D pose of a novel object and maintain a complete mesh for immediate robotic applications. Thorough experiments on various benchmarks show that HIPPo outperforms state-of-the-art methods in 6D object pose estimation when prior reference images are limited.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: