Unknown Word Detection for English as a Second Language (ESL) Learners Using Gaze and Pre-trained Language Models (2502.10378v1)
Abstract: English as a Second Language (ESL) learners often encounter unknown words that hinder their text comprehension. Automatically detecting these words as users read can enable computing systems to provide just-in-time definitions, synonyms, or contextual explanations, thereby helping users learn vocabulary in a natural and seamless manner. This paper presents EyeLingo, a transformer-based machine learning method that predicts the probability of unknown words based on text content and eye gaze trajectory in real time with high accuracy. A 20-participant user study revealed that our method can achieve an accuracy of 97.6%, and an F1-score of 71.1%. We implemented a real-time reading assistance prototype to show the effectiveness of EyeLingo. The user study shows improvement in willingness to use and usefulness compared to baseline methods.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.