Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Estimation of the Learning Coefficient Using Empirical Loss (2502.09998v1)

Published 14 Feb 2025 in stat.ML and cs.LG

Abstract: The learning coefficient plays a crucial role in analyzing the performance of information criteria, such as the Widely Applicable Information Criterion (WAIC) and the Widely Applicable Bayesian Information Criterion (WBIC), which Sumio Watanabe developed to assess model generalization ability. In regular statistical models, the learning coefficient is given by d/2, where d is the dimension of the parameter space. More generally, it is defined as the absolute value of the pole order of a zeta function derived from the Kullback-Leibler divergence and the prior distribution. However, except for specific cases such as reduced-rank regression, the learning coefficient cannot be derived in a closed form. Watanabe proposed a numerical method to estimate the learning coefficient, which Imai further refined to enhance its convergence properties. These methods utilize the asymptotic behavior of WBIC and have been shown to be statistically consistent as the sample size grows. In this paper, we propose a novel numerical estimation method that fundamentally differs from previous approaches and leverages a new quantity, "Empirical Loss," which was introduced by Watanabe. Through numerical experiments, we demonstrate that our proposed method exhibits both lower bias and lower variance compared to those of Watanabe and Imai. Additionally, we provide a theoretical analysis that elucidates why our method outperforms existing techniques and present empirical evidence that supports our findings.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: