Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Interpretable Early Warnings using Machine Learning in an Online Game-experiment (2502.09880v1)

Published 14 Feb 2025 in physics.soc-ph, cs.LG, cs.SI, nlin.AO, and stat.ML

Abstract: Stemming from physics and later applied to other fields such as ecology, the theory of critical transitions suggests that some regime shifts are preceded by statistical early warning signals. Reddit's r/place experiment, a large-scale social game, provides a unique opportunity to test these signals consistently across thousands of subsystems undergoing critical transitions. In r/place, millions of users collaboratively created compositions, or pixel-art drawings, in which transitions occur when one composition rapidly replaces another. We develop a machine-learning-based early warning system that combines the predictive power of multiple system-specific time series via gradient-boosted decision trees with memory-retaining features. Our method significantly outperforms standard early warning indicators. Trained on the 2022 r/place data, our algorithm detects half of the transitions occurring within 20 minutes at a false positive rate of just 3.7%. Its performance remains robust when tested on the 2023 r/place event, demonstrating generalizability across different contexts. Using SHapley Additive exPlanations (SHAP) for interpreting the predictions, we investigate the underlying drivers of warnings, which could be relevant to other complex systems, especially online social systems. We reveal an interplay of patterns preceding transitions, such as critical slowing down or speeding up, a lack of innovation or coordination, turbulent histories, and a lack of image complexity. These findings show the potential of machine learning indicators in socio-ecological systems for predicting regime shifts and understanding their dynamics.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 8 likes.