Object-Centric Latent Action Learning (2502.09680v2)
Abstract: Leveraging vast amounts of unlabeled internet video data for embodied AI is currently bottlenecked by the lack of action labels and the presence of action-correlated visual distractors. Although recent latent action policy optimization (LAPO) has shown promise in inferring proxy-action labels from visual observations, its performance degrades significantly when distractors are present. To address this limitation, we propose a novel object-centric latent action learning framework that centers on objects rather than pixels. We leverage self-supervised object-centric pretraining to disentangle action-related and distracting dynamics. This allows LAPO to focus on task-relevant interactions, resulting in more robust proxy-action labels, enabling better imitation learning and efficient adaptation of the agent with just a few action-labeled trajectories. We evaluated our method in eight visually complex tasks across the Distracting Control Suite (DCS) and Distracting MetaWorld (DMW). Our results show that object-centric pretraining mitigates the negative effects of distractors by 50%, as measured by downstream task performance: average return (DCS) and success rate (DMW).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.