Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 397 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A 3D Facial Reconstruction Evaluation Methodology: Comparing Smartphone Scans with Deep Learning Based Methods Using Geometry and Morphometry Criteria (2502.09425v1)

Published 13 Feb 2025 in cs.CV

Abstract: Three-dimensional (3D) facial shape analysis has gained interest due to its potential clinical applications. However, the high cost of advanced 3D facial acquisition systems limits their widespread use, driving the development of low-cost acquisition and reconstruction methods. This study introduces a novel evaluation methodology that goes beyond traditional geometry-based benchmarks by integrating morphometric shape analysis techniques, providing a statistical framework for assessing facial morphology preservation. As a case study, we compare smartphone-based 3D scans with state-of-the-art deep learning reconstruction methods from 2D images, using high-end stereophotogrammetry models as ground truth. This methodology enables a quantitative assessment of global and local shape differences, offering a biologically meaningful validation approach for low-cost 3D facial acquisition and reconstruction techniques.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.