Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Joint Attention Mechanism Learning to Facilitate Opto-physiological Monitoring during Physical Activity (2502.09291v1)

Published 13 Feb 2025 in eess.SP and cs.LG

Abstract: Opto-physiological monitoring is a non-contact technique for measuring cardiac signals, i.e., photoplethysmography (PPG). Quality PPG signals directly lead to reliable physiological readings. However, PPG signal acquisition procedures are often accompanied by spurious motion artefacts (MAs), especially during low-to-high-intensity physical activity. This study proposes a practical adversarial learning approach for opto-physiological monitoring by using a generative adversarial network with an attention mechanism (AM-GAN) to model motion noise and to allow MA removal. The AM-GAN learns an MA-resistant mapping from raw and noisy signals to clear PPG signals in an adversarial manner, guided by an attention mechanism to directly translate the motion reference of triaxial acceleration to the MAs appearing in the raw signal. The AM-GAN was experimented with three various protocols engaged with 39 subjects in various physical activities. The average absolute error for heart rate (HR) derived from the MA-free PPG signal via the AM-GAN, is 1.81 beats/min for the IEEE-SPC dataset and 3.86 beats/min for the PPGDalia dataset. The same procedure applied to an in-house LU dataset resulted in average absolute errors for HR and respiratory rate (RR) of less than 1.37 beats/min and 2.49 breaths/min, respectively. The study demonstrates the robustness and resilience of AM-GAN, particularly during low-to-high-intensity physical activities.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: