SparQLe: Speech Queries to Text Translation Through LLMs (2502.09284v3)
Abstract: With the growing influence of LLMs, there is increasing interest in integrating speech representations with them to enable more seamless multi-modal processing and speech understanding. This study introduces a novel approach that combines self-supervised speech representations with instruction-tuned LLMs for speech-to-text translation. The proposed approach leverages a modality adapter to align extracted speech features with instruction-tuned LLMs using English speech data. Our experiments demonstrate that this method effectively preserves the semantic content of the input speech and serves as an effective bridge between self-supervised speech models and instruction-tuned LLMs, offering a promising approach for various speech understanding applications.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.