Papers
Topics
Authors
Recent
2000 character limit reached

Towards Understanding Why Data Augmentation Improves Generalization (2502.08940v1)

Published 13 Feb 2025 in cs.CV, cs.LG, and stat.ML

Abstract: Data augmentation is a cornerstone technique in deep learning, widely used to improve model generalization. Traditional methods like random cropping and color jittering, as well as advanced techniques such as CutOut, Mixup, and CutMix, have achieved notable success across various domains. However, the mechanisms by which data augmentation improves generalization remain poorly understood, and existing theoretical analyses typically focus on individual techniques without a unified explanation. In this work, we present a unified theoretical framework that elucidates how data augmentation enhances generalization through two key effects: partial semantic feature removal and feature mixing. Partial semantic feature removal reduces the model's reliance on individual feature, promoting diverse feature learning and better generalization. Feature mixing, by scaling down original semantic features and introducing noise, increases training complexity, driving the model to develop more robust features. Advanced methods like CutMix integrate both effects, achieving complementary benefits. Our theoretical insights are further supported by experimental results, validating the effectiveness of this unified perspective.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.