A Machine Learning-Ready Data Processing Tool for Near Real-Time Forecasting (2502.08555v1)
Abstract: Space weather forecasting is critical for mitigating radiation risks in space exploration and protecting Earth-based technologies from geomagnetic disturbances. This paper presents the development of a Machine Learning (ML)- ready data processing tool for Near Real-Time (NRT) space weather forecasting. By merging data from diverse NRT sources such as solar imagery, magnetic field measurements, and energetic particle fluxes, the tool addresses key gaps in current space weather prediction capabilities. The tool processes and structures the data for machine learning models, focusing on time-series forecasting and event detection for extreme solar events. It provides users with a framework to download, process, and label data for ML applications, streamlining the workflow for improved NRT space weather forecasting and scientific research.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.