Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Privacy amplification by random allocation (2502.08202v3)

Published 12 Feb 2025 in cs.LG

Abstract: We consider the privacy amplification properties of a sampling scheme in which a user's data is used in $k$ steps chosen randomly and uniformly from a sequence (or set) of $t$ steps. This sampling scheme has been recently applied in the context of differentially private optimization [Chua et al., 2024a, Choquette-Choo et al., 2024] and is also motivated by communication-efficient high-dimensional private aggregation [Asi et al., 2025]. Existing analyses of this scheme either rely on privacy amplification by shuffling which leads to overly conservative bounds or require Monte Carlo simulations that are computationally prohibitive in most practical scenarios. We give the first theoretical guarantees and numerical estimation algorithms for this sampling scheme. In particular, we demonstrate that the privacy guarantees of random $k$-out-of-$t$ allocation can be upper bounded by the privacy guarantees of the well-studied independent (or Poisson) subsampling in which each step uses the user's data with probability $(1+o(1))k/t$. Further, we provide two additional analysis techniques that lead to numerical improvements in several parameter regimes. Altogether, our bounds give efficiently-computable and nearly tight numerical results for random allocation applied to Gaussian noise addition.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube