Papers
Topics
Authors
Recent
2000 character limit reached

Understanding the Kronecker Matrix-Vector Complexity of Linear Algebra (2502.08029v2)

Published 12 Feb 2025 in cs.DS, cs.NA, and math.NA

Abstract: We study the computational model where we can access a matrix $\mathbf{A}$ only by computing matrix-vector products $\mathbf{A}\mathrm{x}$ for vectors of the form $\mathrm{x} = \mathrm{x}_1 \otimes \cdots \otimes \mathrm{x}_q$. We prove exponential lower bounds on the number of queries needed to estimate various properties, including the trace and the top eigenvalue of $\mathbf{A}$. Our proofs hold for all adaptive algorithms, modulo a mild conditioning assumption on the algorithm's queries. We further prove that algorithms whose queries come from a small alphabet (e.g., $\mathrm{x}_i \in {\pm1}n$) cannot test if $\mathbf{A}$ is identically zero with polynomial complexity, despite the fact that a single query using Gaussian vectors solves the problem with probability 1. In steep contrast to the non-Kronecker case, this shows that sketching $\mathbf{A}$ with different distributions of the same subguassian norm can yield exponentially different query complexities. Our proofs follow from the observation that random vectors with Kronecker structure have exponentially smaller inner products than their non-Kronecker counterparts.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.