Papers
Topics
Authors
Recent
2000 character limit reached

Towards Training One-Step Diffusion Models Without Distillation (2502.08005v3)

Published 11 Feb 2025 in cs.LG and cs.CV

Abstract: Recent advances in training one-step diffusion models typically follow a two-stage pipeline: first training a teacher diffusion model and then distilling it into a one-step student model. This process often depends on both the teacher's score function for supervision and its weights for initializing the student model. In this paper, we explore whether one-step diffusion models can be trained directly without this distillation procedure. We introduce a family of new training methods that entirely forgo teacher score supervision, yet outperforms most teacher-guided distillation approaches. This suggests that score supervision is not essential for effective training of one-step diffusion models. However, we find that initializing the student model with the teacher's weights remains critical. Surprisingly, the key advantage of teacher initialization is not due to better latent-to-output mappings, but rather the rich set of feature representations across different noise levels that the teacher diffusion model provides. These insights take us one step closer towards training one-step diffusion models without distillation and provide a better understanding of the roles of teacher supervision and initialization in the distillation process.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: