Papers
Topics
Authors
Recent
2000 character limit reached

Towards Efficient and Multifaceted Computer-assisted Pronunciation Training Leveraging Hierarchical Selective State Space Model and Decoupled Cross-entropy Loss (2502.07575v2)

Published 11 Feb 2025 in eess.AS and cs.CL

Abstract: Prior efforts in building computer-assisted pronunciation training (CAPT) systems often treat automatic pronunciation assessment (APA) and mispronunciation detection and diagnosis (MDD) as separate fronts: the former aims to provide multiple pronunciation aspect scores across diverse linguistic levels, while the latter focuses instead on pinpointing the precise phonetic pronunciation errors made by non-native language learners. However, it is generally expected that a full-fledged CAPT system should perform both functionalities simultaneously and efficiently. In response to this surging demand, we in this work first propose HMamba, a novel CAPT approach that seamlessly integrates APA and MDD tasks in parallel. In addition, we introduce a novel loss function, decoupled cross-entropy loss (deXent), specifically tailored for MDD to facilitate better-supervised learning for detecting mispronounced phones, thereby enhancing overall performance. A comprehensive set of empirical results on the speechocean762 benchmark dataset demonstrates the effectiveness of our approach on APA. Notably, our proposed approach also yields a considerable improvement in MDD performance over a strong baseline, achieving an F1-score of 63.85%. Our codes are made available at https://github.com/Fuann/hmamba

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.