Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 124 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A nested MLMC framework for efficient simulations on FPGAs (2502.07123v1)

Published 10 Feb 2025 in q-fin.CP, cs.NA, and math.NA

Abstract: Multilevel Monte Carlo (MLMC) reduces the total computational cost of financial option pricing by combining SDE approximations with multiple resolutions. This paper explores a further avenue for reducing cost and improving power efficiency through the use of low precision calculations on configurable hardware devices such as Field-Programmable Gate Arrays (FPGAs). We propose a new framework that exploits approximate random variables and fixed-point operations with optimised precision to generate most SDE paths with a lower cost and reduce the overall cost of the MLMC framework. We first discuss several methods for the cheap generation of approximate random Normal increments. To set the bit-width of variables in the path generation we then propose a rounding error model and optimise the precision of all variables on each MLMC level. With these key improvements, our proposed framework offers higher computational savings than the existing mixed-precision MLMC frameworks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: