Papers
Topics
Authors
Recent
2000 character limit reached

Using Contextually Aligned Online Reviews to Measure LLMs' Performance Disparities Across Language Varieties (2502.07058v3)

Published 10 Feb 2025 in cs.CL and cs.HC

Abstract: A language can have different varieties. These varieties can affect the performance of NLP models, including LLMs, which are often trained on data from widely spoken varieties. This paper introduces a novel and cost-effective approach to benchmark model performance across language varieties. We argue that international online review platforms, such as Booking.com, can serve as effective data sources for constructing datasets that capture comments in different language varieties from similar real-world scenarios, like reviews for the same hotel with the same rating using the same language (e.g., Mandarin Chinese) but different language varieties (e.g., Taiwan Mandarin, Mainland Mandarin). To prove this concept, we constructed a contextually aligned dataset comprising reviews in Taiwan Mandarin and Mainland Mandarin and tested six LLMs in a sentiment analysis task. Our results show that LLMs consistently underperform in Taiwan Mandarin.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 18 likes about this paper.