Papers
Topics
Authors
Recent
2000 character limit reached

Select before Act: Spatially Decoupled Action Repetition for Continuous Control (2502.06919v2)

Published 10 Feb 2025 in cs.LG, cs.AI, and cs.RO

Abstract: Reinforcement Learning (RL) has achieved remarkable success in various continuous control tasks, such as robot manipulation and locomotion. Different to mainstream RL which makes decisions at individual steps, recent studies have incorporated action repetition into RL, achieving enhanced action persistence with improved sample efficiency and superior performance. However, existing methods treat all action dimensions as a whole during repetition, ignoring variations among them. This constraint leads to inflexibility in decisions, which reduces policy agility with inferior effectiveness. In this work, we propose a novel repetition framework called SDAR, which implements Spatially Decoupled Action Repetition through performing closed-loop act-or-repeat selection for each action dimension individually. SDAR achieves more flexible repetition strategies, leading to an improved balance between action persistence and diversity. Compared to existing repetition frameworks, SDAR is more sample efficient with higher policy performance and reduced action fluctuation. Experiments are conducted on various continuous control scenarios, demonstrating the effectiveness of spatially decoupled repetition design proposed in this work.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.